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ized the role of learning in the development of rapid tolerance and have shown that
glutamate-mediated neurotransmission plays an important role in this phenomenon. Since the AMPA/kainate
receptor system is directly involved in plasticity mechanisms, the influence of this receptor system on rapid
tolerance induced by ethanol was studied using the rotarod. In the first experiment, mice were pretreated with
aniracetam, an agonist of AMPA/kainate receptors, 30min before ethanol (2.75 g/kg; IP) treatment, and tested on
the rotarod. After 24 h, the groupswere tested on the rotarod under ethanol treatment. Aniracetam facilitated the
acquisition of rapid tolerance to ethanol. In the secondexperiment,mice receivedDNQX, a competitive antagonist
of the AMPA receptor, 30min before ethanol treatment (3 g/kg) and submitted to the rotarod. This dose of ethanol
produced tolerance per se. Groups were tested under ethanol treatment (1.75 g/kg) after 24 h. DNQX blocked
rapid tolerance to ethanol. Using a similar protocol, the third experiment showed that DNQX blocked the
aniracetam-induced facilitation of rapid tolerance to ethanol. Our results show that aniracetam facilitates
whereas DNQX blocks ethanol tolerance, suggesting that the non-NMDA receptors are involved in this
phenomenon.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
Prolonged exposure to ethanol is clearly in compass with tolerance
development (Kalant et al., 1971). This event is intimately connected
with other plasticity processes (Kalant, 1998). Tolerance mechanisms
appear to be relevant to the development of ethanol abuse and
dependence, because they can promote an attenuation of the aversive
effect of this drugwith regard to its rewarding effects, thus encouraging
the use of escalating doses (American Psychiatric Association, 1994).

There are many forms of tolerance, and rapid tolerance to ethanol
has been observed in the response to a seconddose given 8–24h after a
single previous exposure to ethanol (Crabbe et al., 1979; da Silva et al.,
2001). Two other types of tolerance are the chronic one that develops
gradually over days or weeks of ethanol administration (Kalant et al.,
1971; Littleton et al., 1980), and the acute tolerance that develops with
a single exposure to ethanol (Kalant et al., 1971; Khanna et al., 2002)
Acute tolerance probably represents an innate adaptive response
(Chandler et al., 1998), and has a potential value as a predictor of
vulnerability to alcoholism (Schuckit, 1986; Schuckit and Smith, 1997)
whereas rapid and chronic tolerances are adaptive responses generally
perceived as a consequence of repeated drug exposure.

Moreover knowledge on the mechanism of tolerance to ethanol
has an important role in the study of alcoholism because of its value as
a model of neuroadaptative processes (Kalant, 1998) and its possible
contribution to alcohol consumption (Waller et al., 1983) and
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dependence (Altman et al., 1996). Some evidence from neuronal
culture studies has indicated that chronic exposure to ethanol can
potentiate excitotoxicity (Chandler et al., 1993; Iorio et al., 1993).

Glutamate is directly involved in this process and plays amajor role in
excitatory neurotransmission in the CNS (Del Rio et al., in press; Ferreira
et al., 1992; Molz et al., 2008). Glutamate receptors are present in several
brain structures having a wide structural diversity. These receptors are
also classified according to their electrophysiological and pharmacologi-
cal characteristics in subtypes: NMDA (N-methyl-D-aspartate), AMPA (α-
amino-3-hydroxy-5-methyl-4-isoxazole propionic acid), Kainate and
metabotropic receptors (Brugger et al., 1990). Accumulating evidence
suggests that neurophysiologic and pathologic effects of ethanol are
mediated, at least in part, through the glutamatergic system (Karolewicz
et al., 2008). The NMDA receptor is the most characterized constituent of
the glutamate system; these receptors are among those with the highest
affinity that ethanol targets in the brain (Evans et al., 2007; Grant and
Lovinger, 1995; Hendricson et al., 2007), and the role of the NMDA
receptor in the development of tolerance and sensitization to ethanol
(Trujillo and Akil, 1995) is well described. Recent evidence also suggests
the interaction of ethanolwith the AMPA/kainate system (Pickering et al.,
2007; Vaglenova et al., 2008). Several studies have shown that the AMPA/
kainate system has an important modulatory influence on different
systems. For instance, agonists and antagonists at this receptor system
were shown to influence cognitive functions (Bast et al., 2005; Derkach
et al., 2007; Himori and Mishima, 1994; Lynch and Gall, 2006),
nociception (Cheng and Chiou, 2006), anxiety (Allison and Pratt, 2006),
cell proliferation in diverse CNS regions (LoTurco et al., 1995), seizure
threshold (Porter et al., 2006), anti-proliferative effects in retina
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development (Martins et al., 2006), increased protein expression in
auditory system (Xu et al., 2007), and discriminative stimuli of
abused drugs (Jackson et al., 1996). The modulatory action of the
AMPA agonist aniracetam on synaptic responses can be altered by
the induction of long-term potentiation (Kolta et al., 1998),
characterized as an increase in the synapse efficacy that has been
suggested to be the cellular basis of memory (Bashir and Collin-
gridge, 1992; Kandel, 2004; Mapelli and D'Angelo, 2007; Pastalkova
et al., 2006). Chronic ethanol treatment when synergistically
combined with an AMPA agonist can cause an increased expression
of NMDA and AMPA subunit proteins characterizing an adaptive
mechanism to the inhibition caused by ethanol at these sites
(Chandler et al., 1998). These effects can be associated to enhanced
calcium activity in cerebellum Purkinje neurons (Netzeband et al.,
1999). The cerebellum constitutes one of the main encephalic targets
involved in ethanol induced motor incoordination (Botta et al., 2007;
Carta et al., 2006).

Although the involvement of the NMDA receptor system in ethanol
tolerance is well documented (Khanna et al., 2002, 1997; Neznanova
et al., 2000), there is a lack of studies on the influence of the AMPA/
kainate receptor system on this process. Thus, the purpose of the
present study was to verify whether the activation or the blockade of
the AMPA/kainate system would affect the development of rapid
tolerance to the motor incoordinating effect of ethanol in mice.

2. Materials and methods

2.1. Animals

Adultmale Swissmice (2–3month old), weighing 23–33 g from the
Universidade Federal de Santa Catarina colony were used. The animals
were housed in groups of 15 per cage andwere kept under a controlled
light–dark cycle (lights on from 06:00 h to 18:00 h) and temperature
(23±1 °C). They had free access to food and water. The animals were
tested between 13:30 h and 17:30 h in order to minimize circadian
influences. All procedures were in compliance with the National
Institutes of Health Guide for Care and Use of Laboratory Animals.

2.2. Drugs

Ethanol, analytical grade, obtained from Merck Laboratory (Rio de
Janeiro, Brazil) was prepared by dilution in 0.9% NaCl (saline) to the
concentration of 14% w/v. Aniracetam (an AMPA/kainate agonist) and
DNQX (6,7 dinitroquinoxaline-2,3-dione) (an AMPA antagonist) were
purchased from Research Biochemical International (Natick, MA).
DNQX (1, 2.5, 5 and 10 mg/kg) was prepared in saline, while
aniracetam (7.5, 10, 15, 22.5 and 30 mg/kg) was prepared in 4%
Tween in saline. Control group of the aniracetam treated group were
treated with a solution of saline in Tween 4% in the same proportions
of aniracetam treated group. Reagents for determination of blood
ethanol levels were obtained from Sigma Chemical Co. (St Louis, MO).
All drugs were freshly prepared.

2.3. Rotarod test

Motor impairment was measured on rotarod apparatus (Rotamex-
V-EE/85) controlled by a computational system (Columbus Instru-
ments Computer-Counter Interface; USA). Animalswere trained under
continuous acceleration (1 rpm/s) in 1-minute sessions.Whenever the
animal dropped off the rotating bar, it received a footshock (0.5 mA).
The speed at which the animal dropped off the rotating bar was taken
as the performance score. Animals that did not reach a stable baseline
(at least 20 rpm) in 10 trials were not considered for analysis. The
animals that presented performance between 20 and 40 rpm were
selected for the experiment. About 90%of the animals usually reach the
criteria. After the selection, experimental and control groups (n=10)
were arranged according to their body weight and mean performance
during the last training session. With this procedure, animals
presented similar basal values in all groups.

2.4. Blood ethanol assay

Groups of animals were pretreated with different doses of AMPA/
kainate receptor agonist (aniracetam) or antagonist (DNQX) 30 min
before ethanol treatment (1.75 g/kg). Blood samples were collected
from the animals by direct tail puncture 5 min after ethanol
administration. Blood ethanol concentration was evaluated enzyma-
tically based on ethanol conversion to acetaldehyde by the action of
alcohol dehydrogenase (Poklis and Mackell, 1982).

3. Experimental design

3.1. Experiment 1: effect of aniracetam on the development of rapid
tolerance to ethanol-induced motor impairment

Onday 1, trainedmicewere divided into 10 groups (n=20) in order to
receive pretreatment with saline (5 groups) or aniracetam (1 group per
dose) in doses of 7.5; 10.0; 15.0; 22.5 or 30.0 mg/kg given by oral route
(o.r.). This treatment regimenwas chosen for the detection of facilitation
for tolerance development. After 30min, each groupwas further divided
in two subgroups inorder tobe injectedwith ethanol (1.75 g/kg) or saline
by intraperitoneal (IP) route. Thus, 20 groups of ten mice each were
obtained. Before thefirst injection and 5,15 and 30min. later, the degree
of motor impairment was assessed (rotarod test) in all animals as
described above. Two hours after saline or ethanol injection, the animals
received an additional dose of saline or EtOH (1.0 g/kg), in order to
complete 2.75 g/kg. The procedure of administering EtOH in two doses
(1.75+1.0 g/kg) was employed because previous experiments showed
that a total dose of 2.75 g/kg on day 1 is insufficient to produce a reliable
rapid tolerance on day 2 (Bare et al., 1998). Mice were then returned to
theirhomecages. After 24h, all animals includingcontrols receivedEtOH
(1.75 g/kg, IP) and 5,10 and 15min later, theywere tested on the rotarod
to evaluate rapid tolerance.

3.2. Experiment 2: effect of DNQX on the development of rapid tolerance
to ethanol-induced motor impairment

The protocol used was similar to experiment 1. On day one, eight
groups of trained mice (n=20 each) were divided in order to receive
pretreatment with saline (4 groups) or DNQX (one group per dose).
Doses of 1.0; 2.5; 5.0 or 10.0mg/kg of DNQXwere given by IP injection.
After 30 min, each group was further divided into two groups in order
to receive ethanol (1.75 g/kg) or saline by IP route. Each animal was
tested 5, 15 and 30 min later on the rotarod apparatus as described
above. Two hours after saline or ethanol injection, the animals
received an additional dose of saline or EtOH (1.25 g/kg), in order to
complete 3.0 g/kg. Two divided doses of ethanol (1.75+1.25 g/kg)
were used because previous experiments showed that a total dose of
3 g/kg was required on day 1 to produce a reliable rapid tolerance on
day 2. Because doses greater than 1.75 g/kg may not always fall into
the linear rapid tolerance of the dose–response curve, the choice of
this dose allows us to compare results across days (Bare et al., 1998).
Mice were then returned to their home cages. After 24 h, all animals
including controls received EtOH (1.75 g/kg) and 5,10 and 15min later
were tested on the rotarod to evaluate rapid tolerance.

3.3. Experiment 3: interaction between DNQX x Aniracetam on the
development of rapid tolerance to ethanol-induced motor impairment

On day 1, 80 trained mice were randomly divided into two groups
of 40 animals each. One group was injected (IP) with DNQX (5 mg/kg)
and the other group received the same volume of saline at zero time.
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Each of the groups was further subdivided into two subgroups. At
30 min, one of the subgroups of each group received aniracetam (o.r.)
(15 mg/kg), while the other subgroup received vehicle. Finally, all of
the subgroups were divided again into two subgroups each, making
eight subgroups. At 60 min, four of the eight subgroups received
ethanol (1.75 g/kg, IP), while the remaining subgroups received saline.
Five, 15 and 30 min later, each animal was tested on the rotarod
apparatus as described above. Two hours after saline or ethanol
injection, the animals received an additional dose of saline or EtOH
(1.0 g/kg), in order to complete 2.75 g/kg. Mice were then returned to
their home cages. After 24 h, all animals including controls received
EtOH (1.75 g/kg IP) and 5, 10 and 15 min later, they were tested on the
rotarod to evaluate rapid tolerance.

3.4. Statistical analysis

Statistica 6 forWindows, Statsoft, Inc. software (StatSoft Inc., Tulsa,
OK, USA) was used to perform the statistical analysis. The difference
between the baseline and maximum impairment scores provided the
maximum percentage of motor impairment induced by ethanol. Data
were analyzed using analysis of variance ANOVA, with pretreatment
and treatment as independent variables, according to the protocol.
Post hoc comparisons were performed using Tukey's test. Values of
Fig. 1. Development of rapid tolerance to ethanol-induced motor impairment by aniracetam
another ten groups received aniracetam (7.5, 10.0, 15.0 22.5 and 30 mg/kg) o.r. 30 min prio
additional dose of saline or ethanol (1.0 g/kg, IP), in order to complete 2.75 g/kg. Rapid toleran
ethanol (1.75 g/kg, IP). Results shown are means±SEM of 10 animals per group. # pb0.05 c
pb0.05 were considered significant. In experiments 1, 2, and 3, data
are presented as mean±SEM, according to:

Maximum percent of motor impairment = baseline scoreð Þ− test scoreð Þ
baseline score ×100

4. Results

4.1. Experiment 1: effect of aniracetam on the development of rapid
tolerance to ethanol-induced motor impairment

The results obtained in experiment 1 are depicted in Fig. 1 (panels A,
B, C, D, and E). Motor impairment was not significantly reduced in all
saline+ethanol (SE) groups on the second day of the experiment,
suggesting that the dose of 2.75 g/kg ethanol (1.75+1.0 g/kg) is
insufficient to produce rapid tolerance. Two-way ANOVA indicated a
significant overall effect of treatment (Fig. 1A: F(1,36)=2.51; pN0.05;
Fig. 1B: F(1,36)=3.32; pN0.05; Fig. 1C: F(1,36)=101.91; pb0.0001; Fig. 1D:
F(1,36)=11.43; pb0.002; Fig. 1E: F(1,36)=2.36; pN0.05). The groups treated
with aniracetam (10,15 or 22.5mg/kg) before ethanol treatment on day
1 showed reduced motor impairment when compared to the controls
(SE), suggesting that these animals developed tolerance on day 2. Two-
way ANOVA revealed the effect of pretreatment (Fig. 1B: F(1,36)=4.60;
pb0.04; Fig.1C: F(1,36)=102.54; pb0.0001; Fig. 1D: F(1,36)=5.51; pb0.03).
pretreatment. Ten groups of mice received saline followed by ethanol or saline, and
r to saline or ethanol 1.75 g/kg, IP, on day 1. Two hours later, the animals received an
ce to ethanol was assessed on day 2, 30min after all groups received a challenge dose of
ompared to respective control (Tukey's test).



Fig. 2. Blockade of rapid tolerance to ethanol-induced motor impairment by DNQX pretreatment. Eight groups of mice received saline followed by ethanol or saline, and another eight
groups received DNQX (1.0, 2.5, 5.0 or 10 mg/kg), IP, 30 min prior to saline or ethanol 1.75 g/kg, IP, on day 1. Two hours later, the animals received an additional dose of saline or
ethanol (1.25 g/kg, IP), in order to complete 3 g/kg. Rapid tolerance to ethanol was assessed on day 2, when all groups received a challenge dose of ethanol (1.75 g/kg, IP). Results
shown are means±SEM of 10 animals per group. # pb0.05 compared to respective control (Tukey's test).

Fig. 3. Effects of the interaction between aniracetam and DNQX pretreatments on the
development of rapid tolerance to ethanol-induced motor impairment. Eight groups
received saline or DNQX (5 mg/kg, IP) 30 min before the administration of saline or
aniracetam (15.0 mg/kg, o.r). Saline or ethanol (1.75 g/kg, IP) was administered 30 min
after the last treatment, on day 1. Two hours later, they received an additional dose of
ethanol (1.0 g/kg, IP), in order to complete 2.75 g/kg, and the control group received
saline. Rapid tolerance to ethanol was assessed on day 2, when all groups received a
challenge dose of ethanol (1.75 g/kg, IP). Results shown are means±SEM of 10 animals
per group. # pb0.05 compared to respective control (Tukey's test).
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Interactions between pretreatment and treatment were also significant
(Fig. 1B: F(1,36)=5.60; pb0.02; Fig. 1C: F(1,36)=94.81; pb0.0001; Fig. 1D:
F(1,36)=14.53; pb0.0005). Post hoc analysis indicated that aniracetam
(10.0,15.0 or 22.5 mg/kg) facilitated the development of rapid tolerance
(Tukey's test). Aniracetam in doses of 7.5 and 30mg/kg did not affect the
performanceof animals treatedwith ethanol (Fig.1A andE respectively).
On day 1, all groups treated with ethanol associated with saline or
Aniracetam showed significant differences compared to their respective
control groups (SS and AS). Moreover, the group treated with
Aniracetam in doses of 30 mg/kg plus ethanol (AE) showed reduced
motor incoordinationonday1when compared to saline + ethanol group
(SE). Two-way ANOVA showed that the effect of treatment [F(1,36)
=111.44, pb0.0001] and pre-treatment and treatment were significant
[F(1,36)=21.72, pb0.0001]. Post hoc comparisons confirmed that motor
impairment was significantly reduced when the SE was compared with
AE groups on the first day of the experiment.

4.2. Experiment 2: effect of DNQX on the development of rapid tolerance
to ethanol-induced motor impairment

The results of this experiment are shown in Fig. 2. Motor
impairment was significantly reduced in all saline+ethanol (SE)
groups on the second day of the experiment, after receiving ethanol
treatment, suggesting the development of tolerance. Two-way ANOVA
revealed a significant overall effect of treatment (Fig. 2A: F(1,36)=
201.60; pb0.0001; Fig. 2B: F(1,36)=60.75; pb0.0001; Fig. 2C: F(1,36)=
60.29; pb0.0001; Fig. 2D: F(1,36)=42.01; pb0.0001). Post hoc analysis
showed the development of rapid tolerance (Tukey's test). The groups
treated with DNQX in doses of 5.0 and 10.0 mg/kg before ethanol
treatment on day 1 showed blockade of rapid tolerance on day 2. Two-
way ANOVA revealed the effect of pretreatment (Fig. 2C: F(1,36)=45.16;
pb0.0001; Fig. 2D: F(1,36)=50.45; pb0.0001). Interactions between
pretreatment and treatment were significant (Fig. 2C: F(1,36)=48.93;
pb0.0001; Fig. 2D: F(1,36) =38.22; pb0.0001). Post hoc analysis
revealed a significant dose-dependent blockade of rapid tolerance
by DNQX in doses of 5.0 and 10.0 mg/kg (Tukey's test). DNQX in doses
of 1.0 and 2.5 mg/kg did not block rapid tolerance (Fig. 2).

4.3. Experiment 3: interaction between DNQX and Aniracetam in the
development of rapid tolerance to ethanol- induced motor impairment

Results are shown in Fig. 3. On day 1, mice injected with ethanol
2.75 g/kg (1.75+1.0) showed the expected motor impairment
response, and the administration of aniracetam or DNQX did not
significantly affect the motor impairment responses. On day 2, motor
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incoordination was not significantly reduced in the group saline–
saline–ethanol (1.75 g/kg IP) (SSE). ANOVA indicated a significant
effect of treatment (F(1,72)=61.72; pb0.0001), and post hoc analysis did
not indicate the development of rapid tolerance (Tukey's test).

Confirming our previous data, aniracetam (15.0 mg/kg) facilitated
the development of tolerance on day 2, since the group pretreated
with this drug 30 min before ethanol treatment (SAE) on day 1
showed significant differences in relation to the group treated with
saline before ethanol treatment (SSE). ANOVA indicated the effect of
aniracetam pretreatment [F(1,72)=34.30, pb0.00001] and post hoc
analysis suggested the development of rapid tolerance (Tukey's test).

The groups pretreated with DNQX (5.0 mg/kg) 30 min. before
aniracetam administration did not develop rapid tolerance on the
second day. ANOVA indicated the effect of DNQXpretreatment [F(1,72)=
16.40, pb0.0001], and therewas a significant interaction factor [F(1,72)=
26.65, pb0.00001]. Post hoc analysis showed the blockade of rapid
tolerance by DNQX in the group DNQX+aniracetam+Ethanol on day 2
(Tukey's test).

4.4. Blood ethanol assay

Blood ethanol concentration was not significantly affected by the
treatmentwith aniracetam15mg/kg (120.2±7.0mg/dl) DNQX 10mg/kg
(120.0±2.9 mg/dl) and the conjunction of both, DNQX 10 mg/kg+
Aniracetam 15 mg/kg (123.6±3.8 mg/dl), as compared to the respective
control group (126.8±3.7 mg/dl).

5. Discussion

In order to verify whether AMPA-mediated neurotransmission
participated in the development of rapid tolerance, we studied the
influence of aniracetam and DNQX – an agonist and a competitive
antagonist, respectively, at the AMPA/kainate receptor – on ethanol-
induced motor impairment. The present results demonstrate for the
first time that aniracetam (10, 15 and 22.5 mg/kg) facilitated the
development of rapid tolerance. These doses, when given alone, did
not affect ethanol-inducedmotor incoordination on day 1. Aniracetam
concentrations appear to modulate the acquisition of rapid tolerance
in an inverse U shape response, when the middle dose (15 mg/kg)
presented the peak in the facilitation of acquisition of rapid tolerance,
while the doses of 10 and 22.5 mg/kg showed diminished facilitation
of the same phenomenon. Conversely, DNQX promptly blocked the
facilitation of the development of rapid tolerance to ethanol induced
by aniracetam. The fact that rapid tolerance was significantly
modulated by treatment with aniracetam or DNQX highlights that
the AMPA/kainate system is involved in the rapid-tolerance mechan-
ism. The blockade of rapid tolerance by DNQX was obtained with
doses that did not influence the behavior of animals treated with
either saline or ethanol. Moreover, blood ethanol concentrations of
animals treated with aniracetam or DNQX did not show any
differences when compared to the respective controls, suggesting
that pharmacokinetics interactions between ethanol and aniracetam
or DNQX are unlikely.

As cited in the introduction Purkinje neurons are preferable targets
of ethanol in CNS. These neurons necessarily receive excitatory inputs
via a single climbing fiber. This pathway provides high glutamate
release (Schmolesky et al., 2002). AMPA receptors are responsible for
triggering the activation of climbing fibers, eliciting an excitatory
response. In this perspective, AMPA receptors are in part responsible
for the initial response in the modulation of Purkinje neurons. This
hypothesis confirms that the pharmacological modulation of AMPA
receptors could also modulate the acquisition of rapid tolerance.

There is evidence that learning factors might influence the develop-
ment of chronic (Chen, 1968; Wenger et al., 1980) and rapid tolerance
(Bitran and Kalant, 1991; Kalant, 1996; Khanna et al., 1994;Wazlawik and
Morato, 2002). Previous studies have implicated the glutamatergic
system, particularly the NMDA receptor, as an important target for
acquisition of rapid tolerance (Corso et al., 1998; Khanna et al., 2002;
Khannaet al.,1997;Neznanovaet al., 2000;Trujillo andAkil,1995). Several
studies also describe the important role of the glutamatergic system in a
number of plasticity processes, like long-term potentiation, for example
(Bliss and Lomo, 1973; Derkach et al., 2007), a mechanism that is also
involved in the rapid tolerance development (Chandler et al., 1998).

LTP is themolecular pathway that better represents the acquisition
and maintenance of new memories (Bliss and Collingridge, 1993).
Several studies have related this plasticity process as a pivotal part of
mnemonic events (Izquierdo et al., 1997; Kandel, 2004). The
disruption of LTP, by pharmacological blockade or circuitry distur-
bance, can absolutely abolish the formation of memories (Izquierdo
et al., 1993; Quillfeldt et al., 1994; Roesler et al., 2000; Rosen et al.,
2006; Rosen et al., 1992; Rosen et al., 1996). In the LTP mechanism, the
entire glutamatergic system is involved, and the AMPA/kainate system
has been related as the initial trigger for the event (Kakegawa and
Yuzaki, 2005; Staubli et al., 1992; Tocco et al., 1992).

As cited above, disturbance of LTP results in non-formation of
memories, and that is the mechanism underlying ethanol amnesic
effects (Weitemier and Ryabinin, 2003; Wright et al., 2003; Yin et al.,
2007). On the other hand, electrophysiological studies have char-
acterized positive properties of ethanol to induce plasticity in the
AMPA/kainate system (Frye and Fincher, 2000; Hou et al., 2008; Sager
et al., in press; Villareal et al., 2007), but none of the cited studies has
related an improvement specifically in LTP-type of plasticity. In fact,
recent evidence shows that ethanol induces the reversion of direction
in long-term synaptic plasticity (Yin et al., 2007).

Previous studies show that aniracetam facilitates whereas DNQX
impairs plasticity processes in vitro (Andras et al., 2007; Blythe et al.,
2007; Nicoletti et al., 1992). As mentioned above, the AMPA/kainate
receptor system represents the initial trigger for LTP and the increased
activity at this site. Thus, it is possible that the administration of an
agonist (aniracetam) facilitated plasticity processes, which in turn
facilitated the acquisition of tolerance response. Conversely, the
inhibition of the AMPA receptor with the antagonist (DNQX) impaired
plasticity processes leading to the blockade of tolerance acquisition.

The molecular adaptive changes occurring in the brain after
ethanol exposure include fast (phosphorylation) or slow (changes in
receptor subunit expression) alterations in different receptor systems
such as GABAA and NMDA (Grobin and Deutch, 1998; Krystal et al.,
2003; Loh and Ball, 2000; Ron, 2004). Thus, beyond the direct
interaction of aniracetam and DNQX with AMPA/kainate receptor, it is
possible that the facilitation of plasticity induced by ethanol could
induce neuroadaptative changes and subsequently modulate GABAA

and/or NMDA receptor responses to ethanol, as previously shown in in
vivo and in vitro studies (Carpenter-Hyland et al., 2004; Dahchour
et al., 2000; Maldve et al., 2002; Pickard et al., 2001;Watt et al., 2004).
Therefore, the mechanisms underlying the effects of aniracetam and
DNQX on ethanol rapid tolerance could be indirect.

Another possibility to explain how the activation or the blockade of
the AMPA/kainate receptor influence rapid tolerance is that pharma-
cologic interference in the glutamatergic system modulates other
neurotransmitters systems such as the cholinergic, GABAergic or
noradrenergic system (Akirav, 2007; Hu et al., 2007; Kremin and
Hasselmo, 2007; Liang et al., 2007; Ohno et al., 1996; Zheng et al.,
2007), which have pivotal role in cognitive processes (Akhavan et al.,
2008; Bentley et al., 2008; Bergado et al., 2007; Dumas et al., 2008). In
this speculative hypothesis, the influence on the cognitive aspect of
the task remains the same, where the disturbance of the cognition
modulates the tolerance response.

Nevertheless, it cannot be ignored that the task used to evaluate
rapid tolerance (rotarod) contemplates other non-cognitive compo-
nents that could be responsible for the behavioral alteration as
previously reported concerning the modulation of the endocannabi-
noid (Lemos et al., 2007) or opioid system (Varaschin et al., 2005).
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In conclusion, the primary findings of this study suggest that the
AMPA/kainate receptor system participates in the development of
rapid tolerance to ethanol. In addition, a direct or indirect participa-
tion of the AMPA/kainate system in the learning component inherent
to the proposed task is likely. Considering that tolerance mechanisms
appear to be relevant to the development of ethanol abuse and
dependence, as well as representing a predictor of susceptibility to
alcoholism (Schuckit, 1986), the present results suggest an additional
target to counteract these disorders.
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